

Preliminary LCR Results

Ryan Carlson

Senior Resource Adequacy Analyst

ICAPWG

October 5, 2021

Agenda

- Review Net CONE
- Review Transmission Security Limits (TSLs) for 2022
 - Using the Goldbook load forecast
- Preliminary LCR Results
- Next Steps

Background

- Each year the NYISO produces preliminary LCR values for informational and discussion purposes.
 - The process used to produce these preliminary LCRs follows the process used to determine final LCRs, i.e., the optimized LCR method.
- This presentation provides preliminary LCR values using the NYSRC IRM Preliminary Base Case and other preliminary inputs (e.g., Net CONE Curves).
- Data updates will occur, such as the finalization of the NYSRC IRM case, before the final LCRs are determined by the NYISO.

2022 Preliminary Net CONE Curves

- Net CONE updated consistent with FERC order
- Associated Proxy Units:

NYCA: 326.7 MW

Zones G-J: 347.0 MW

Zone J: 348.8 MW

Zone K: 348.8 MW

2002 200	0.0 11 1					
2022-202	2022-2023 Preliminary Net CONE Curves					
Location	LCR (%)	Net CONE (\$/kW-yr)				
NYCA	112.9	71.14				
	115.9	72.77				
	118.9	74.15				
	121.9	75.46				
	124.9	76.01				
G-J	84.0	100.75				
	87.0	102.91				
	90.0	104.48				
	93.0	105.92				
	96.0	106.61				
Zone J	80.6	148.26				
	83.6	153.14				
	86.6	155.12				
	89.6	156.68				
	92.6	157.79				
Zone K	97.4	79.51				
	100.4	88.98				
	103.4	94.82				
	106.4	97.77				
	109.4	100.32				

2022 Preliminary TSL Values (Old Method)

Preliminary Base Case TSL calculations

Transmission Security Requirements	Formula	GHIJ	NYC	LI	Source
Load Forecast (MW)	[A] = Given	15,453*	11,286*	5,191.6*	2022 Goldbook Forecast
Transmission Security Limit (MW)	[B] = Given	3,400	3,200	350	2021 TSL Report
Minimum UCAP Needed (MW)	[C] = [A]-[B]	12,053	8,086	4,841	
UCAP Needed Percent	[D] = [C]/[A]	78.00%	71.65%	93.26%	
5 Year EFORd	[E] = Given	9.57%	7.99%	9.12%	2022 EFORd from PBC
ICAP Needed (MW)	[F] = [C]/(1-[E])	13,328	8,788.4	5,327.5	
ICAP Floor Requirement (TSLs)	[G] = [F]/[A]	86.3%	77.9%	102.6%	2022 Prelim TSLs (Old method)

^{*} This value includes the ACHL from BTM:NG in Zone J (21.3 MW) and Zone K (42.0 MW)

2022 Preliminary TSL Values (New Method)

Transmission Security Limit	Formula	GHIJ	NYC	Long Island	Description
Load Forecast (MW)	[A] = Given	15453.0	11286	5192	Load forecast used in 2021 TSL determination. The proposed TSL method enhancements do not affect this parameter.
Transmission Security Limit (MW)	[B] = Studied	3425.0	2900	325	Bulk power transmission capability into the Locality consistent with reliability rules, less generation source contingencies (NYC: Ravenswood 3. LI: Neptune).
Resource Unavailability (MW)	[C] = Given	492.0	407	37	Special Case Resources, July 2021 enrollments per NYSRC IRM Study. SCRs do not contribute to transmission security under normal transfer criteria.
ICAP Requirement (MW)	[D] = [A]-[B]+[C]	12,520	8,793	4,904	
ICAP Requirement Floor (%)	[E] = ROUND([D]/[A],1)	81.0%	77.9%	94.5%	

Values include the ACHL from BTM:NG in Zone J (21.3 MW) and Zone K (42.0 MW)

Final 2021 LCR Results - Comparison

Optimized LCRs

	NYCA IRM	G-J	NYC	LI
2021 FBC LCRs	20.7%*	88.7%	80.6%	102.9%**
2021 Final LCRs	20.7%*	87.6%	80.3%	102.9%**
deltas	0.0%	-1.1%	-0.3%	0.0%

^{*} Determined by ICS Tan 45 Process

^{**} The TSL Limit for Long Island was binding

Preliminary 2022 LCR Results

Optimized LCRs

	NYCA IRM	G-J	NYC	LI
2022 PBC Tan45	18.6%*	90.2%	80.6%	96.1%
2022 Prelim LCRs (old TSL)	18.6%*	86.4%	79.0%	102.6%**
2022 Prelim LCRs (new TSL)	18.6%*	90.8%	81.2%	94.7%

^{*} Determined by ICS Tan 45 Process

^{**} The TSL Limit for Long Island was binding

TSLs in the LCR setting process

- Consistent with discussions at the 6/30 and 9/9 ICAPWG meetings, the NYISO will update the method it uses to determine TSLs for the 2022-2023 Capability Year LCR determination process
 - These updates will align the LCR TSL setting process with Transmission Security analysis conducted for Planning purposes
- The following slide shows the 2021 final LCRs (for the 2021-2022 Capability Year) and the 2022 preliminary LCRs

Comparison of LCRs

Optimized LCRs

	NYCA IRM	G-J	NYC	LI
2021 Final LCRs	20.7%*	87.6%	80.3%	102.9%**
2022 Prelim LCRs (new TSL)	18.6%*	90.8%	81.2%	94.7%

^{*} Determined by ICS Tan 45 Process

^{**} The TSL Limit for Long Island was binding

2022 Preliminary LCR Results

IRM Decreased; factors include:

- Reduction in LFU
- Lower non-coincident peaks in forecast

G-J LCR

- Value impacted by updated LFU and Load
- Upward pressure on G-J LCR due to reduction in K TSL and associated drop in K LCR

2022 Preliminary LCR Results (cont.)

J LCR

- Value impacted by updated LFU and Load
- Small upward pressure from the K TSL and associated LCR drop

K LCR

TSL decreased and was no longer binding

Next Steps

Finalize the IRM database

- NYSRC scheduled to approve the final IRM in early December
- The NYSRC updates the IRM if a material system change occurs

Finalize Net CONE Curves

NYISO posts Demand Curve Reset Annual Update results by November 30

Finalize TSLs in October

- NYISO to post TSL report which will contain final TSL values using the new TSL setting method
- NYISO to update the load forecast to be consistent with the final IRM load forecast
- NYISO to post an updated LCR procedure reflecting the updated TSL method

Provide updated preliminary LCRs in mid-December

- Consistent with previous discussions at ICAPWG and procedural updates, NYISO will utilize the final IRM database to determine final LCRs and will discuss those results with stakeholders in mid-December.
- Unless the NYSRC updates the IRM after its initial approval, these preliminary LCRs will be presented to the Operating Committee for approval in January
- Present final LCRs to the NYISO Operating Committee in January 2022

Questions?

Questions or comments can be sent to IRM@nyiso.com

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

